Valve Setting
- The valve may be fully closed at any time. However when re-opened, it will stop exactly at the previously set point. Opening movement should cease when resistance is felt. Over tightening is not required and should be avoided.

The valve is provided with a data tag that indicates:
- Fig. number of the valve: T1810, T1810 LF, T1810L, T1810LF or T1810U
 S1810, S1810 LF, S1810L, S1810LF or S1810U
- Nominal size
- Flow coefficient Cvs

On the tag there is room to write the required initial setting of the valve, indicating either the setting reading, the design flow rate or the pressure signal.

This tag can be fixed to the handwheel with the plastic zip tie provided. The plastic tie is long enough to be used with insulated piping systems and still provide a clear identification of the valve.

Maintenance
The NIBCO® Fixed Orifice Circuit Balancing Valves do not require any routine maintenance.

Fixed Orifice Circuit Balancing Valve
including DZR brass and Lead Free CR brass

Fixed Orifice Circuit Balancing Valves (FOCBV) provide flow regulation, accurate flow measurement and isolation in a single product. The valve is a precision manufactured product and should be handled, installed and used with care as detailed in these instructions.

Valve Models
- Fig. T1810 has female threaded NPT end connections as ANSI/ASME B1.20.1
- Fig. S1810 has solder end connections as ANSI B16.22

Valves are supplied with P/T ports fitted.

These instructions will also apply to the Low Flow and Ultra Low Flow products. These products are identified by an “L” and “U” marked on the body, respectively.

The Lead Free valve is identified by the WHITE insert in the handwheel, ‘LF’ body marking and the certification logo and NSF refs on the body. The DZR brass valve has a blue insert in the handwheel.

Limits of Use
The valve rating is shown in the table below and it must be installed in a system where the normal pressure and temperature does not exceed this rating.

The valve is intended for non-shock operating conditions:
Water hammer, impacts, stress loads, corrosive or erosive external environmental elements and the transport of fluids with abrasive properties should be avoided.

Operating Pressure and Temperature

<table>
<thead>
<tr>
<th>Non-Shock Pressure at Temperature Range</th>
<th>Non-Shock Pressure at Max Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 psi from 15°F(*) to 160°F</td>
<td>150 psi at 260°F</td>
</tr>
</tbody>
</table>

(*) = temperatures apply only when glycol additives used.
Installation, Operating and Maintenance Instructions

Layout and Siting

Prior to installation, it should be considered where the valves will be located to give access for operation, insertion of the test probes and for setting the required position.

Installation

The FOCBV is a precision manufactured product and should not be subjected to misuse. The valve should be unpacked immediately prior to installation to avoid foreign particles entering the valve through the end ports. The valve and adjacent pipework should be checked for cleanliness and freedom from debris before installation. There should be no internal burrs in the pipe to be connected to the valve.

Confirm that pipe threading is correct and undamaged and avoid excessive penetration into the valve which may cause damage.

It is important to ensure that the flow arrow on the valve body is coincident with the direction of flow in the pipeline.

Thread sealing liquids or tape may be used on the pipe threads but excessive use should be avoided to prevent sealant from being extruded into the valve bore, disturbing the flow condition. The use of hemp-style material should be avoided since this may cause overstressing of the female threaded ends of the valve.

In order to achieve accurate flow measurement, the fixed orifice circuit balancing valves should be installed with a minimum of 5 diameters equivalent of straight pipe upstream and 2 diameters downstream, having the same nominal diameter as the valve and should not include any reducers or intrusions into the bore within these specified lengths.

Operating

During the commissioning stage, all entrained air must be removed from the system before accurate measurements of differential pressure signals can be taken at the P/T ports.

There are two P/T ports, each fitted with a colored strap and captive cap.
- Upstream (HP) Red
- Downstream (LP) Blue

For safety reasons, all manometer probe insertions of the P/T ports must be carried out with the system cold.

Remove the screwed cap and insert the test probe into the P/T port. A silicone oil or grease should be lightly applied to the shaft of the probe before insertion. No other type of lubricant must be used.

Refer to the flow data manual for individual flow charts, Cvs and Cv values.

Valve Setting

This setting of the valve will be displayed by the two figures shown in the windows on the side of the handwheel assembly:
- Window closest to the valve body (Sliding numbers 0-4) illustrates the number of full turns
- Window closest to the handwheel (rotating numbers 1-9) illustrates the tenths of a turn Position 0-0 indicates that the valve is fully closed.

When the required flow has been achieved, the memory stop feature is set as follows:
- Pry up the center handwheel cap using a small screwdriver or similar tool. Insert the 3mm Allen key provided into the opening and while holding the handwheel in its desired position, tighten the inner Allen screw clockwise until it stops. Care should be taken not to over tighten this screw.
- Replace the plastic cap. Tampering with the valve setting may be prevented by sealing the cap to the upper part of the handwheel by using the existing slots and an appropriate wire or nylon seals.