Polypropylene and Kynar® PVDF True Union Ball Check, and Vent Valves

Features
- Rated at 150 psi with non-shock service at 73°F
- Gravity ball check may be converted for air or gas venting by replacement of standard ball with natural polypropylene floater ball. Then install valve upside down for fluid to lift ball into seat.
- Free oscillation of ball in guide ribs facilitates full port flow with minimum turbulence and chatter.
- Equally effective in checking back flows from head pressure on the discharge or suction sides of pump.

Construction Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Black PP</th>
<th>Nat. PP</th>
<th>Red PVDF</th>
<th>Nat. PVDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Union Nut</td>
<td>Black PP</td>
<td>Nat. PP</td>
<td>Red PVDF</td>
<td>Nat. PVDF</td>
</tr>
<tr>
<td>2. End Connector</td>
<td>Black PP</td>
<td>Nat. PP</td>
<td>Red PVDF</td>
<td>Nat. PVDF</td>
</tr>
<tr>
<td>3. Ball – Standard for Check or Foot Valve</td>
<td>Nat. GBPP</td>
<td>Natural PP Floater Ball</td>
<td>Nat. PVDF</td>
<td></td>
</tr>
<tr>
<td>4. Body1</td>
<td>Black PP</td>
<td>Nat. PP</td>
<td>Red PVDF</td>
<td>Nat. PVDF</td>
</tr>
<tr>
<td>5. C.V. Seat-Carrier</td>
<td>Nat. PP</td>
<td>Nat. PVDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. O-ring Body & Carrier, End Seal</td>
<td>FKM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. O-ring2 Seat-Carrier, OD Seal</td>
<td>FKM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. O-ring3 Seat Seal</td>
<td>FKM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Plain End Pipe Nipple for Flanged Valve</td>
<td>Black PP</td>
<td>Nat. PP</td>
<td>Red PVDF</td>
<td>Nat. PVDF</td>
</tr>
<tr>
<td>10. Flange–Socket for Flanged Valve</td>
<td>Black PP</td>
<td>Nat. PP</td>
<td>Red PVDF</td>
<td>Nat. PVDF</td>
</tr>
</tbody>
</table>

Dimensions1–Weights–Fluid Flow Coefficients

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Approx.2</th>
<th>C42</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>3.50</td>
<td>1.98</td>
<td>2.63</td>
<td>0.50</td>
<td>3.94</td>
<td>4.13</td>
<td>2.36</td>
<td>6.27</td>
<td>0.42</td>
<td>6</td>
</tr>
<tr>
<td>3/4</td>
<td>3.88</td>
<td>2.44</td>
<td>2.63</td>
<td>0.75</td>
<td>4.65</td>
<td>5.02</td>
<td>3.00</td>
<td>7.38</td>
<td>0.72</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>4.26</td>
<td>2.83</td>
<td>3.63</td>
<td>1.00</td>
<td>5.08</td>
<td>5.40</td>
<td>3.12</td>
<td>7.99</td>
<td>1.05</td>
<td>4</td>
</tr>
<tr>
<td>1 1/2</td>
<td>5.00</td>
<td>4.08</td>
<td>5.50</td>
<td>1.50</td>
<td>6.38</td>
<td>6.99</td>
<td>4.21</td>
<td>10.18</td>
<td>2.62</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6.00</td>
<td>5.23</td>
<td>5.50</td>
<td>2.00</td>
<td>7.36</td>
<td>8.02</td>
<td>4.99</td>
<td>11.45</td>
<td>4.76</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Dimensions shown are for PVC and CPVC. Due to molding shrinkage the dimensions for PP and PVDF would be somewhat less, and the end-to-end length of threaded equals socket valves.
2. Weights shown for ball valve figures are PVC threaded models. For an approximation of PVDF, and PP check valve weights the PVC weight may be multiplied by factors of 1.275, or 0.656 respectively.

3. C4 values are based on the basic valve laying length (G).

Maximum Operating Pressure (psi vs. Temperature)

<table>
<thead>
<tr>
<th>Operating Temperature (F)</th>
<th>PP</th>
<th>PVDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>110</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>120</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>130</td>
<td>118</td>
<td>150</td>
</tr>
<tr>
<td>140</td>
<td>105</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Temperature (F)</th>
<th>PP</th>
<th>PVDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>133</td>
</tr>
<tr>
<td>170</td>
<td>170</td>
<td>125</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>115</td>
</tr>
<tr>
<td>190</td>
<td>190</td>
<td>N.R.</td>
</tr>
</tbody>
</table>

N.R. - Not recommended

Kynar® is a registered trademark of Arkema Inc.